This Horizontal \& vertical table is so designed as to permit machining operations at a higher dimension. The base can be used in a vertical position to enabling to carry out center work.

Dimensions

Part No.
HVRT - 01
HVRT - 02
HVRT - 03
HVRT - 04
HVRT - 05
HVRT - 06

HVRT - 14
HVRT - 15
HVRT - 16
HVRT - 17
HVRT - 18
HVRT - 19
HVRT - 20
HVRT-21
HVRT-22

Parts Names
Worm Ring
Washer
Cap Screw
Metal Setting Screw Vernier Ring Handle Clamp Screw Clamp Piece Clamp Handle Handle

Horizontal \& Vertical Rotary Table

ALIGNMENT

Aligning the center of the Rotary Table to the spindle is essential for achieving quality results. Position the spindle over center of the Rotary Table and touch all four sides (inside outside) until all sides read " 0 " on the indicator (to rotate the Spindle and not the Rotary Table).

Horizontal \& Vertical Tilting Rotary Table

Dimensions

Order No.	TABLE DIMENSION				BASE DIMENSION												$\begin{gathered} \text { TYPE } \\ \text { OF } \\ \text { SLOT } \end{gathered}$	$\begin{gathered} \text { T-BOLT } \\ \text { SIZE } \\ \mathrm{mm} \end{gathered}$	CENTERBORE			Weight Kg/lb		Gear ratio
	TABLE		HIGHT		OVERALL LENGTH		OVERALL HEIGHT		$\begin{aligned} & \text { CENTER } \\ & \text { HEIGHT } \end{aligned}$		$\begin{aligned} & \text { BASE } \\ & \text { LENGTH } \end{aligned}$		BASE WIDTH		$\begin{aligned} & \text { BODY } \\ & \text { HEIGHT } \end{aligned}$					TILT BODY HEIGHT				
	Inch	mm				Inch	mm	Kg	lb															
111325	4.5/16	110	2.3/8	63	9.3/4	248	4.9/16	116	3.1/4	82	6.3/4	172	5.5/8	142	2.718	72		M8	MT-2	6/7/16	164	12	26.4	90:1
111335	6	150	2.13/16	81	11.1/2	291	5	124	4.1/8	105	8.7/16	214	7.1/16	180	3.1/8	80		M8	MT-2	8	204	20	44	90:1

Part No. Parts Names

09
1011121314
15
16
1718
1920
2122
23
24
2526
27
28
30
313233
34353637

Clamp For Table
Clamp Screw 1/4" $\times 20^{\prime \prime}$
Clamping Handle
Vernier Ring Handle
Side Clamping Piece
Table
Helix Gear Part
Side Mounted Piece
Bottom Table Clamp. Plate
Pin With Mark. For Tilting Body
Pin For Tilting Body
Key For Base
Worm Clamping Nut
Washer
1/4" Oil Nipple
Allen Screw
Allen Screw
Allen Screw
Grub Screw
Allen Screw
Allen Screw
Allen Screw
Grub Screw
Allen Screw
Grub Screw
Allen Screw
Handle
Spl. Bolt $1 / 4^{\prime \prime} \times 20^{\prime \prime}$
Key For Handle

OPERATING INSTRUCTION AND FUNCTION OF EACH UNIT

1. The worm gear is $90: 1$.

- One turn of the handle moves the table by 4°
- Micro-collar is graduated in steps of 1 min .
- Vernier scale makes settings down to 10 seconds possible 110243, 110244
(20 seconds for $110239,110241,110242$)

2. Dividing of 2 to 100 can be carried out quickly and accurately by attaching a Dividing Mechanism.
3. Center work can also be carried out by using the base in the vertical Position in conjunction with a tailstock.

THERE ARE THREE METHODS OF SETTING POSITIONS USING A ROTARY TABLE

1. Use the degree scale on the outer edge of the table
(scale reading = 1 degree)
a To use the degree scale on the table top, disengage the worm by unlocking the T screw and rotating the pin on the worm collar clockwise. The table can be rotated by hand and can be locked in any position using the lock clamps.
2. Use the degree handwheel (scale on handwheel = degrees and minutes)
a To use the handwheel, unlock or loosen the T screw and rotate the pin on the worm collar anti-clockwise and when the worm has engaged, lock or tighten the T screw. If the worm collar will not rotate easily, it may be necessary to rotate the handwheel while keeping pressure on the pin so the worm will mesh or engage.
The hand wheel is divided into degrees and minutes eg: 4 degrees per revolution or ratio of $90: 1$. The minute divisions on the handwheel can be further divided into 20 seconds using the vernier scale.
3. Use the index method (use index plates and refer index table)
a To use the index method first refer to the index table to select the index plate with the correct holes on the circle. (See Index table located on the Page-8 back of this manual)
b To use the index plates, the hand wheel must be removed by loosening the centre retaining screw and washer.
c Mount the appropriate index plate with the correct number of holes to the collar with 3 screws.
d Next fit the sector arms (the brass pieces) and adjust the sector arms for the correct number of holes. Holes are counted after the pin or first hole. So for six holes, sector arms are actually set for seven holes ie; pin +6 holes.
e Fit the retaining washer in the groove in front of the sector arms.
$f \quad$ Fit the crank with the spring loaded handle, adjusting so the plunger lines up with the correct circle of holes. Tighten with the screw and washer that held the handwheel.
g To index, rotate the handle the correct number of full turns anf then using the sector arms to measuer the number of holes. After the handle is locked in, rotate the arms ready for the next cycle or index.

Eg: For 21 tooth gear or 21 divisions, Use the 21 hole plate. Set the sector arms for 6 holes then rotate the handle 4 full turns plus 6 holes. If in doubt, have a practice run

1. Adjusting Mesh of worm Gear:- Loosen the metal clamp handle and turn the switch metal clockwise until it touches the stopper. The worm gear has now been disengaged. Turn it counterclockwise until it touches the stopper, the worm and gear wheel will engage. Tighten the metal clamp handle after engagement. An additional adjustment can be obtained by removing the screw A and steel ball and turning the inner screw B counter clock-wise so bringing the worm in closer engagement with the gear wheel. Turning clock-wise brings the worm away from the wheel. After adjustment insert the steel ball and tighten screw A
2. Axial Adjustment of Worm shaft:- When axial slack occurs gear adjustment is carried out by tightening the inside worm shaft nut after the handle, vernier ring and switch metal have been removed. After adjustment, lock the nut on the shaft by means of the set screw. (The ROTARY TABLE has an adjustment, nut, which can be used after removal of the handle.)
